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Interpretable genotype-to-
phenotype classifiers with 
performance guarantees
Alexandre Drouin   1,2, Gaël Letarte1,2, Frédéric Raymond   3,4, Mario Marchand1,2, 
Jacques Corbeil   2,5 & François Laviolette1,2

Understanding the relationship between the genome of a cell and its phenotype is a central problem 
in precision medicine. Nonetheless, genotype-to-phenotype prediction comes with great challenges 
for machine learning algorithms that limit their use in this setting. The high dimensionality of the 
data tends to hinder generalization and challenges the scalability of most learning algorithms. 
Additionally, most algorithms produce models that are complex and difficult to interpret. We alleviate 
these limitations by proposing strong performance guarantees, based on sample compression theory, 
for rule-based learning algorithms that produce highly interpretable models. We show that these 
guarantees can be leveraged to accelerate learning and improve model interpretability. Our approach 
is validated through an application to the genomic prediction of antimicrobial resistance, an important 
public health concern. Highly accurate models were obtained for 12 species and 56 antibiotics, and 
their interpretation revealed known resistance mechanisms, as well as some potentially new ones. An 
open-source disk-based implementation that is both memory and computationally efficient is provided 
with this work. The implementation is turnkey, requires no prior knowledge of machine learning, and is 
complemented by comprehensive tutorials.

The relationship between the genome of a cell and its phenotype is central to precision medicine. Specific muta-
tions in the human genome are known to affect the metabolism of drugs and thus influence the response to 
treatments and the toxicity of common drugs like warfarin or azathioprine1. Similarly, mutated genes in bacteria 
lead to increased virulence or resistance to antimicrobial agents, which leads to an increased risk of morbidity2. 
Large-scale studies that aim to link genomic features to clinical outcomes are now common in both eukaryotes 
and prokaryotes.

The most common type of studies are genome-wide association studies (GWAS), which aim to identify all 
statistically significant genotype-to-phenotype associations3,4. An alternative approach consists of using machine 
learning algorithms to build models that correlate genomic variations with phenotypes5,6. This approach contrasts 
with GWAS in that the objective shifts from thoroughly understanding the phenotype, to accurately predicting it 
based on the occurrence of genomic variations.

Nevertheless, the accurate prediction of phenotypes is insufficient for many applications in biology, such as 
clinical diagnostics. Models must rely on a decision process that can be validated by domain experts and thus, 
algorithms that produce interpretable models are preferred6,7. Rule-based classifiers are models that make predic-
tions by answering a series of questions, such as “Is there a mutation at base pair 42 in this gene?” Such models are 
highly interpretable and the decision logic can be validated experimentally to confirm accuracy and potentially 
lead to the extraction of new biological knowledge.

In this study, two algorithms that learn rule-based models are explored: (i) Classification and Regression 
Trees8 (CART) and (ii) Set Covering Machines9 (SCM). The former learns decision trees, which are hierarchical 
arrangements of rules and the latter learns conjunctions (logical-AND) and disjunctions (logical-OR), which are 
simple logical combinations of rules. Their accuracy and interpretability are demonstrated with an application to 
the prediction of antimicrobial resistance (AMR) in bacteria, a global public health concern of high significance. 
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Several thousand bacterial genomes and their susceptibility to antimicrobial agents are publicly available10 and 
make for an ideal study set. The use of machine learning to predict AMR phenotypes has previously been inves-
tigated using two approaches: (1) considering only known resistance genes and mutations11–14, (2) considering 
whole genomes with no prior knowledge of resistance mechanisms15–20. The work described hereafter relies on 
the latter approach.

The contributions of this study are multidisciplinary. From the biological perspective, 107 highly accurate 
models of antimicrobial resistance, covering 12 human pathogens and 56 antibiotics, are obtained using each of 
the previously described algorithms. These models identify known resistance mechanisms, as well as some poten-
tially new ones. From the machine learning perspective, the study establishes that rule-based models are well 
suited for genotype-to-phenotype prediction and demonstrates their accuracy in comparison to state-of-the-art 
models. A mathematical analysis based on sample compression theory21,22 provides strong statistical guarantees 
on the accuracy of the obtained models, which are essential if the models are to be applied in diagnosis and prog-
nosis23. These guarantees are used to prune the models, increasing their interpretability, while dramatically accel-
erating computing times. Finally, an efficient, disk-based implementation of both algorithms, which efficiently 
scales to increasingly large genomic datasets, is proposed and made publicly available. Importantly, the proposed 
approach is not limited to AMR prediction and could be applied to a plethora of phenotypes.

Results
Overview of the data.  The data used in this study were extracted from the Pathosystems Resource 
Integration Center (PATRIC) database, one of the most comprehensive public databases of bacterial genomes 
and antimicrobial resistance metadata10,24. The protocol used to acquire the data is detailed in Methods and 
the amount of data extracted is shown, per species, in Fig. 1a. In total, 107 binary classification datasets were 
extracted, each consisting of discriminating isolates that are resistant or susceptible to an antimicrobial agent, 
based on their genome, in a given species (e.g., kanamycin resistance in M. tuberculosis). The genomes in each 
dataset were represented by the presence and absence of every k-mer (i.e., sequence of k nucleotides) of length 
31 that occurred in the data17 (see Methods). As illustrated in Fig. 1b, species with high genomic plasticity, such 
as Klebsiella pneumoniae, are associated with greater k-mer counts, whereas species with low diversity, such 
as Mycobacterium tuberculosis, are associated with lower k-mer counts.

The resulting datasets pose significant challenges for machine learning algorithms, which are reflected in 
Fig. 1c. First, the sample size (number of genomes) is extremely small compared to the size of the feature space 
(number of k-mers). This setting, known as fat data25,26, is very common in genotype-to-phenotype studies and 

Figure 1.  Summary of the PATRIC data. (a) Number of genomes and antibiotics for which data was extracted, 
shown by species. (b) Number of k-mers in each dataset (dots), shown by species. Low k-mer counts reflect 
populations with homogeneous genomes, whereas the converse indicates high genomic diversity. (c) For each 
dataset (dots) the number of examples (genomes) and features (k-mers) is shown, along with a measure of class 
imbalance. Clearly, some datasets contain more examples of one of the classes (resistant or susceptible) and each 
dataset shows a strong discrepancy between the number of examples and features. Together, these conditions 
make for challenging learning tasks.
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generally leads to models that overfit the data23, i.e., a situation in which the model fits the training data perfectly, 
but performs poorly on unseen data. Second, many datasets show strong class imbalance (i.e., one class is more 
abundant than the other), due to the fact that more resistant or susceptible genomes were available. This can lead 
to models that are accurate for the most abundant class and perform poorly on the least abundant one. Hence, 
this study will show that accurate models, that are also interpretable, can be learned despite these challenges and 
provide a theoretical justification of these results.

Rule-based models based on performance guarantees.  This study proposes performance guarantees 
for the CART and SCM algorithms under the form of sample compression bounds (see Methods). Such bounds 
are of theoretical interest, as they explain how accurate models can be learned despite the challenging setting. 
Nonetheless, the relevance of these bounds goes beyond simple theoretical justification, since they can be used 
to improve model selection. This essential phase of the learning process consists of setting the hyperparameters 
of the algorithms (e.g., the maximum depth of a decision tree) and pruning the resulting models to reduce their 
complexity. The typical approach to model selection relies on cross-validation, a computationally intensive proce-
dure that involves training the algorithms several times on subsets of the data. In this study, the proposed sample 
compression bounds are used to dramatically accelerate model selection, while allowing all the data to be used 
for training (see Methods). In the following experiments, the proposed bound-based algorithms are referred to as 
CARTb and SCMb, whereas the typical cross-validation-based algorithms are referred to as CARTcv and SCMcv.

Genotype-to-phenotype prediction with rule-based models.  The CARTb and SCMb algorithms 
were trained on the aforementioned datasets to obtain rule-based predictors of antimicrobial resistance. Each 
dataset was randomly partitioned into disjoint training and validation sets, using 80% and 20% of the data respec-
tively. The training sets were used to construct predictive models and the validation sets were used to assess their 
ability to generalize to unseen genomes. This procedure was repeated ten times, using different random parti-
tions, in order to obtain accurate estimates of generalization performance despite the small number of examples 
in some datasets.

The models are highly accurate.  Figure 2 illustrates the accuracies of the models, which correspond to the pro-
portion of correct AMR phenotype assignments in the validation data, for CARTb and SCMb across all datasets. 
Both algorithms perform comparably (p = 0.603 – according to a Wilcoxon signed-rank test), which is reflected 
in the highly similar distribution of model accuracies over the datasets. Moreover, both rule-based algorithms 
learn highly accurate models, despite the challenging nature of the datasets. In fact, 95% of the models have 
accuracies greater than 80%, 75% greater than 90%, and 45% (almost half) greater than 95%. This suggests that 
the rule-based models produced by CARTb and SCMb are well-suited for genotype-to-phenotype prediction. The 
ability of CARTb and SCMb to learn accurate models in this setting is characteristic of their strong resistance to 
overfitting. This counterintuitive result is further supported by Supplementary Fig. S1, which shows that the accu-
racy of the models does not depend on the number of k-mers in the data and that accurate models can be learned 
regardless of the sample size. The theoretical performance guarantees, presented in Methods, provide a mathe-
matical justification of these empirical results. Detailed results for each dataset are available in Supplementary 
Table S1, where several metrics are reported. A detailed comparison of the accuracy of these algorithms is kept for 
the next section, where they are compared to other state-of-the-art algorithms.

The models are highly interpretable.  Figure 3 illustrates rule-based models learned for two datasets: kanamycin 
resistance in M. tuberculosis and meropenem resistance in K. pneumoniae. Three properties are illustrated for 
each rule in the models: (1) the locus at which the corresponding k-mer can be found, (2) a measure of rule 
importance, and (3) the number of equivalent rules. The first is the region of the genome in which the k-mer 
is located and was determined using the Basic Local Alignment Search Tool27 (BLAST). The second quantifies 
the contribution of a rule to the model’s predictions. The greater a rule’s importance, the more examples of the 

Figure 2.  Accuracies of CARTb and SCMb on the validation data of each dataset, grouped by species. The 
datasets are shown as dots and colored according to the number of genomes that they contain. The distribution 
of accuracies for each method is also shown (top). All models have an accuracy greater than 70%.
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training data it serves to discriminate. The rule importances are measured according to Breiman et al.8 for CARTb 
and Drouin et al.17 for SCMb, and were normalized to sum to one. The third results from k-mers that are equally 
predictive of the phenotype. For instance, k-mers located on the same gene may always be present or absent 
simultaneously, resulting in several rules that are equally predictive for the model. Equivalent rules were shown 
to be indicative of the nature of genomic variations17. A small number of equivalent rules, with k-mers overlap-
ping a certain position of the genome, suggests a point mutation, whereas a large number, targeting multiple 
contiguous k-mers, indicates large scale genomic rearrangements, such as gene insertions and deletions. Finally, 
for visualization purposes, the SCMb and CARTb models were selected so that the SCMb model was a subset of 
the CARTb one. This illustrates the ability of CARTb to learn models that are slightly more complex than those 
of SCMb, extending them beyond simple conjunctions and disjunctions. While the SCMb models are not always 
subsets of the CARTb models, it was observed that 81% of the models have at least their most important rule in 
common with their counterpart.

The first set of models, shown in Fig. 3a, are tasked with predicting kanamycin resistance in Mycobacterium 
tuberculosis. Kanamycin is an aminoglycoside antibiotic and a key second-line drug in the fight against multi-drug 
resistant infections28. This drug acts by binding to the 16S rRNA (rrs gene) in the 30S ribosomal subunit to inhibit 
protein synthesis29. Mutations in rrs are known to confer kanamycin resistance29,30. Consistently, both models 
predict resistance in the presence of the A1401G mutation in rrs, a known resistance determinant29,31,32. The 
nature of this mutation was determined by observing that the 31 equivalent rules target k-mers that overlap at 
a single base-pair location on rrs (i.e., 1401) and detect the presence of a guanine at this locus. The second most 
important rule in both models, and its equivalent rules, target k-mers in the promoter region of the eis gene, 
which harbors several resistance-conferring mutations33. This rule predicts the susceptible phenotype in the pres-
ence of the wild-type sequence. In its absence, the SCMb model predicts resistance, which efficiently captures the 
occurrence of several known resistance-conferring mutations using a single rule. The CARTb model also uses this 
rule, but adds an additional requirement for resistance: the presence of a k-mer in the pncA gene, which is asso-
ciated with resistance to pyrazinamide, a first-line anti-tuberculosis drug28. This is consistent with the fact that 
kanamycin is a second-line drug, used in the presence of resistance to first-line treatments. Based on the leaves of 
the models, it can be observed that this additional requirement allows a better separation of resistant and suscep-
tible isolates, resulting in a more accurate model. Of note, SCMb could not have added such a rule to its model, 
since the resulting model is more complex than a single conjunction or disjunction.

The second set of models, shown in Fig. 3b, are tasked with predicting resistance to meropenem, a broad spec-
trum carbapenem antibiotic, in Klebsiella pneumoniae. The first rule in both models targets the blaKPC-2 gene, 
a carbapenem hydrolyzing beta-lactamase that is known to confer resistance to carbapenem antibiotics34. The 
small number of equivalent rules likely results from the models targeting specificities of blaKPC-2 to discriminate 

Figure 3.  Rule-based genotype-to-phenotype classifiers. Each classifier is shown as a hierarchical arrangement 
of rules (boxes) and leaves (rings). Predictions are made by placing a genome at the root and branching left or 
right based on the outcome of the rules until a leaf is reached. A leaf predicts the most abundant class among 
the training examples that were guided into it. The number of such examples is shown in its center and the ring 
is colored according to the distribution of their phenotypes (classes). Each rule detects the presence/absence of 
a k-mer and was colored according to the genomic locus at which it was found. Additionally, each box contains 
a measure of rule importance and the number of rules that were found to be equivalent during training. Finally, 
the logical expression leading to the prediction of the resistant phenotype is shown, under each model, to 
contrast the structure of models learned by each algorithm. In these expressions, the rules are shown as squares 
with colors that match those of the models and the negation of a rule is used to indicate the “absence“ of the k-
mer. In both cases, the CART models are disjunctions of conjunctions (ORs of ANDs) and the SCM models are 
disjunctions (ORs).

https://doi.org/10.1038/s41598-019-40561-2


5Scientific Reports |          (2019) 9:4071  | https://doi.org/10.1038/s41598-019-40561-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

it from its variants, such as blaKPC-1, blaKPC-3. The SCMb model predicts resistance in the presence of a k-mer 
in this gene. However, the CARTb model adds another requirement: the presence of a k-mer in the fepB gene, 
which encodes a periplasmic protein that is essential for virulence35. Based on the leaves of the models, it can be 
observed that this additional requirement allows to correctly classify nine susceptible isolates that were misclassi-
fied by SCMb. Furthermore, both models capture another resistance mechanism, represented by 1497 equivalent 
rules. Interestingly, the k-mers targeted by these rules completely cover the bleMBL and blaNDM-1 genes, which 
are generally present simultaneously and part of the same operon36,37. bleMBL encodes a protein responsible for 
resistance to bleomycin, an anti-cancer drug, and is not causal of meropenem resistance36,37. blaNDM-1 encodes a 
carbapenemase and is a known resistance determinant for meropenem38. Nevertheless, since both genes generally 
occur simultaneously, they were found to be equally good predictors of meropenem resistance. Finally, notice 
that, once again, the CARTb model is slightly more accurate than that of SCMb and that its structure goes beyond 
a simple conjunction or disjunction.

In summary, the CARTb and SCMb can learn highly accurate genotype-to-phenotype models from which rel-
evant biological knowledge can be extracted. Several confirmed antibiotic resistance mechanisms were identified 
using only genome sequences categorized according to their phenotypes. This demonstrates the great potential of 
rule-based classifiers in predicting and understanding the genomic foundations of phenotypes that are currently 
misunderstood.

Comparison to state-of-the-art classifiers.  The CARTb and SCMb algorithms were compared to 
state-of-the-art classifiers on a benchmark of several datasets, described in Table 1. The benchmark includes 
one dataset per species selected in order to have the largest possible sample size with minimal class imbalance 
(see Methods). While we only report results for the benchmark datasets, results for the remaining datasets are 
available in Supplementary Table S1. For each dataset, the protocol described in the previous section (ten repe-
titions) was used. The CARTb and SCMb algorithms were compared to five other learning algorithms, including 
L1-regularized logistic regression39 (L1-Logistic), L2-regularized logistic regression40 (L2-Logistic), Polynomial 
Kernel Support Vector Machines41 (Poly-SVM), and two baseline methods: Naive Bayes42, and the simple predic-
tor that returns the most abundant class in the training data (Majority). These choices are motivated in Methods. 
An extended benchmark with a comparison to additional methods, which were not included for conciseness, is 
available in Supplementary Table S2.

The results of the benchmark are shown in Table 2, where the accuracy and complexity of the models learned 
by each algorithm are compared. Once again, the results indicate that the CARTb and SCMb algorithms perform 
comparably in terms of accuracy (p = 0.600). However, CARTb learns models that rely on slightly more k-mers 
than those of SCMb for 5 out of 12 (5/12) datasets (p = 0.046). In addition, it can be observed that both algorithms 
compare favorably to the other algorithms in the benchmark in terms of accuracy and model complexity. The 
accuracy of CARTb is better or equal to that of L1-logistic on 6/12 datasets (p = 0.879), L2-logistic on 10/12 data-
sets (p = 0.075), Poly-SVM on 9/12 datasets (p = 0.028), and Naive Bayes on all datasets (p = 0.002). Similarly, the 
accuracy of SCMb is better or equal to that of L1-logistic on 7/12 datasets (p = 0.879), L2-logistic on 10/12 datasets 
(p = 0.075), Poly-SVM on 9/12 datasets (p = 0.050), and Naive Bayes on all datasets (p = 0.002). Regarding model 
complexity, both rule-based algorithms learn models that rely on strictly less k-mers than the other algorithms 
for all datasets, including L1-logistic, which is well-known to yield sparse models39. Hence, the rule-based models 
show state-of-the-art accuracy, while relying on significantly less genomic variants, making them easier to inter-
pret, validate, and translate to clinical settings.

Sample compression bounds for model selection.  In the previous experiments, model selection was 
performed using the proposed sample compression bounds in lieu of cross-validation (see Methods). As illus-
trated in Fig. 4, this approach, referred to as bound selection, is much faster than ten-fold cross-validation. In fact, 
for every set of hyperparameter values, ten-fold cross-validation requires ten trainings of the learning algorithm, 
while bound selection only requires one. However, the success of bound selection is highly dependent on the 
quality (tightness) of the generalization bounds used. A bound that is insufficiently tight results in inaccurate 

Species Antibiotic Examples Resistant Susceptible k-mers

A. baumannii Imipenem 499 325 174 42 406 238

E. faecium Vancomycin 134 51 83 10 341 091

E. coli Amoxicillin/Clavulanic acid 1 524 464 1 060 48 456 086

K. pneumoniae Gentamicin 2 107 906 1 201 70 347 931

M. tuberculosis Isoniazid 5 022 1 719 3 303 11 688 883

N. gonorrhoeae Azithromycin 392 214 178 4 766 702

P. difficile Moxifloxacin 462 188 274 19 753 432

P. aeruginosa Levofloxacin 491 201 290 42 961 897

S. enterica Chloramphenicol 347 251 96 6 864 155

S. aureus Methicillin 1 593 707 886 13 289 281

S. haemolyticus Ciprofloxacin 120 74 46 5 341 646

S. pneumoniae Chloramphenicol 409 149 260 6 380 123

Table 1.  Overview of the benchmark datasets.
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estimates of the generalization performance of models and, consequently, inaccurate model selection. To assess 
the accuracy of the proposed bounds in the context of model selection, models trained using cross-validation 
(CARTcv, SCMcv) and bound selection (CARTb, SCMb) were compared in terms of accuracy and model complex-
ity. The same protocol as in the previous sections was used. The results, shown in Table 3, indicate that bound 
selection leads to models that are comparably accurate, but considerably more concise. This reflects a funda-
mental principle that is embedded in the mathematical expression of the bounds: models that are both simple 
and accurate are less subject to overfitting than their more complex counterparts (see Methods). In complement, 
Supplementary Figs S2 and S3 show the value of the bounds for various combinations of hyperparameter values. 
Clearly, some combinations lead to smaller bound values and thus bound-based model selection is possible. 
Additionally, Supplementary Tables S3 and S4 show the best bound values achieved for each benchmark dataset. 
In summary, these results indicate that the proposed sample compression bounds are sufficiently tight to be used 
in model selection and can be used to drastically reduce the training time of the CART and SCM algorithms, 
facilitating their scaling to large genotype-to-phenotype problems.

Multi-class classification with decision trees.  This work has been thus far concerned with the pre-
diction of binary phenotypes (e.g., case vs. control, resistant vs. susceptible). Yet, many phenotypes of practical 
importance are composed of more than two states. While Set Covering Machines do not directly support more 

Dataset SCMb CARTb L1-logistic* L2-logistic* Poly-SVM Naive Bayes Majority

A. baumannii 0.849 (2.7) 0.864 (3.4) 0.880 (3980.5) 0.885 (all) 0.886 (all) 0.822 (all) 0.644

E. coli 0.818 (4.6) 0.808 (7.0) 0.792 (3727.2) 0.789 (all) 0.779 (all) 0.634 (all) 0.697

E. faecium 1.000 (1.0) 1.000 (1.0) 1.000 (142.0) 1.000 (all) 0.996 (all) 0.808 (all) 0.588

K. pneumoniae 0.950 (3.9) 0.949 (4.3) 0.952 (7607.4) 0.948 (all) 0.943 (all) 0.760 (all) 0.571

M. tuberculosis 0.963 (4.5) 0.962 (4.7) 0.962 (2242.2) 0.941 (all) 0.934 (all) 0.789 (all) 0.658

N. gonorrhoeae 0.935 (3.0) 0.936 (3.3) 0.942 (6095.6) 0.915 (all) 0.906 (all) 0.736 (all) 0.529

P. aeruginosa 0.939 (1.2) 0.942 (1.1) 0.937 (87.8) 0.828 (all) 0.773 (all) 0.768 (all) 0.588

P. difficile 0.982 (1.0) 0.982 (1.0) 0.957 (121.8) 0.936 (all) 0.949 (all) 0.887 (all) 0.599

S. aureus 0.987 (1.0) 0.987 (1.0) 0.988 (230.6) 0.987 (all) 0.987 (all) 0.868 (all) 0.544

S. enterica 0.913 (1.0) 0.913 (1.0) 0.925 (991.2) 0.929 (all) 0.920 (all) 0.759 (all) 0.709

S. haemolyticus 0.925 (1.0) 0.925 (1.0) 0.925 (279.1) 0.838 (all) 0.829 (all) 0.758 (all) 0.629

S. pneumoniae 0.960 (1.0) 0.960 (1.0) 0.948 (1391.5) 0.949 (all) 0.946 (all) 0.910 (all) 0.654

Table 2.  Comparison to state-of-the-art classifiers in terms of accuracy and model complexity. For each 
dataset the accuracy is shown, along with the number of k-mers used by the model (in parentheses). Results 
are shown for Set Covering Machines (SCM), Classification trees (CART), Logistic regression with L1 and L2 
regularization and χ2 feature selection (L1-logistic, L2-logistic), Polynomial kernel Support Vector Machines 
(Poly-SVM), Naive Bayes, and a baseline predictor that predicts the most abundant class in the data (Majority). 
Accuracies within 1% of the maximum value are shown in bold. Results are averaged over ten repetitions of the 
experiment. [*] For scalability reasons, these algorithms were trained using feature selection to select the one 
million k-mers that were most associated with the phenotypes; all other k-mers were discarded (see Methods).

Figure 4.  Running time (in seconds) of each algorithm and each model selection strategy on the benchmark 
datasets. For most datasets, using the sample compression bounds as a model selection strategy considerably 
reduces the running time compared to ten-fold cross-validation. SCM tends to run faster than CART, which 
was expected given that for models of equal depth, CART must evaluate many more rules than SCM. Of note, 
the time is shown on a logarithmic scale and thus, a difference in one unit corresponds to a running time that is 
ten times smaller.
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than two classes, CART can work with an arbitrary number of classes. To demonstrate this property of CART, two 
multi-class antibiotic resistance prediction tasks were created. Specifically, the genomes of Klebsiella pneumoniae 
isolates with susceptible (S), intermediate (I), or resistant (R) phenotypes were collected to create three-class 
classification datasets, where the task consisted of discriminating between each level of resistance. This resulted in 
two datasets: gentamycin (2222 genomes, 74 million k-mers) and tobramycin (2068 genomes, 71 million k-mers). 
The accuracy of the resulting models is shown in Fig. 5a,b. Highly accurate predictions were obtained for the 
resistant and susceptible phenotypes, but not for the intermediate one. Interestingly, many intermediate isolates 
were predicted as resistant or susceptible, but the converse rarely occurred. We hypothesize that this is due to the 
presence of resistant and susceptible isolates that are mislabeled as intermediate in the data. In fact, according to 
CLSI testing standards43, the minimum inhibitory concentration (MIC) breakpoint for the intermediate class for 
both antibiotics is flanked by the resistant and susceptible class breakpoints within one two-fold dilution on each 
side. Given that this corresponds to the typical accuracy of MIC measurements44, it is likely that the intermediate 
class contains a fair amount of noise. Therefore, to strengthen our claim that CARTb can learn accurate multi-class 
models, we performed another experiment in which 100 genomes of each species were used to create a dataset 
where the task was to classify each genome into its correct species. This resulted in a dataset with 1200 genomes, 
136 million k-mers, and 12 classes. The results, shown in Fig. 5c, indicate that a near perfect model was learned. 
Although solving this task based on the presence/absence of k-mers is not particularly challenging, the results 
clearly demonstrate that CARTb can learn highly accurate multi-class models.

Dataset SCMb SCMcv CARTb CARTcv

A. baumannii 0.849 (2.7) 0.857 (10.6) 0.864 (3.4) 0.863 (9.6)

E. coli 0.818 (4.6) 0.830 (6.2) 0.808 (7.0) 0.812 (13.3)

E. faecium 1.000 (1.0) 1.000 (1.0) 1.000 (1.0) 1.000 (1.0)

K. pneumoniae 0.950 (3.9) 0.953 (7.9) 0.949 (4.3) 0.948 (8.8)

M. tuberculosis 0.963 (4.5) 0.963 (5.0) 0.962 (4.7) 0.963 (5.9)

N. gonorrhoeae 0.935 (3.0) 0.935 (3.5) 0.936 (3.3) 0.929 (6.1)

P. aeruginosa 0.939 (1.2) 0.939 (1.4) 0.942 (1.1) 0.941 (2.5)

P. difficile 0.982 (1.0) 0.982 (1.0) 0.982 (1.0) 0.982 (1.1)

S. aureus 0.987 (1.0) 0.987 (1.9) 0.987 (1.0) 0.987 (1.6)

S. enterica 0.913 (1.0) 0.907 (1.6) 0.913 (1.0) 0.900 (3.6)

S. haemolyticus 0.925 (1.0) 0.933 (1.0) 0.925 (1.0) 0.933 (1.0)

S. pneumoniae 0.960 (1.0) 0.959 (1.0) 0.960 (1.0) 0.959 (1.0)

Table 3.  Comparison of models learned using bound selection (CARTb, SCMb) and cross-validation (CARTcv, 
SCMcv) as model selection strategies. For each dataset the accuracy is shown, along with the number of k-mers 
used by the model (in parentheses). Accuracies within 1% of the maximum value are shown in bold.

Figure 5.  Confusion matrices for the multi-class classification tasks. (a,b) Prediction of susceptible (S), 
intermediate (I), and resistant (R) AMR phenotypes for gentamicin and tobramycin (K. pneumoniae), 
respectively. (c) Multi-species classification of the twelve species present in our dataset. Results are averaged 
over ten repetitions of the experiments.

https://doi.org/10.1038/s41598-019-40561-2


8Scientific Reports |          (2019) 9:4071  | https://doi.org/10.1038/s41598-019-40561-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
Accurately predicting phenotypes from genotypes is a problem of high significance for biology that comes with 
great challenges for learning algorithms. Difficulties arise when learning from high dimensional genomic data 
with sample sizes that are minute in comparison23. Furthermore, the ability of experts to understand the resulting 
models is paramount and is not possible with most state-of-the-art algorithms. This study has shown that the 
CART and SCM rule-based learning algorithms can meet these challenges and successfully learn highly accurate 
and interpretable genotype-to-phenotype models.

Notably, accurate genotype-to-phenotype models were obtained for 107 antimicrobial resistance phenotypes, 
spanning 12 eukaryotic species and 56 antimicrobial agents, which is an unprecedented scale for a machine 
learning analysis of this problem19. The obtained models were shown to be highly interpretable and to rely on 
confirmed drug resistance mechanisms, which were recovered by the algorithms without any prior knowledge of 
the genome. In addition, the models highlight previously unreported mechanisms, which remain to be investi-
gated. Hence, the learned models are provided as Additional data with the hope that they will seed new research 
in understanding and diagnosing AMR phenotypes. A tutorial explaining how to visualize and annotate the 
models is also included.

Furthermore, a theoretical analysis of the CART and SCM algorithms, based on sample compression theory, 
revealed strong guarantees on the accuracy of the obtained models. Such guarantees are essential if models are to 
be applied in diagnosis or prognosis23. To date, these algorithms are among those that perform the highest degree 
of sample compression and thus, they currently provide the strongest guarantees (in terms of a sample compres-
sion risk bounds) for applications to high dimensional genomic data. Moreover, it was shown that these guaran-
tees can be used for model selection, leading to significantly reduced learning times and models with increased 
interpretability. This serves as a good example of how theoretical machine learning research can be transferred to 
practical applications of high significance.

Finally, it is important to mention the generality of the proposed method, which makes no assumption on the 
species and phenotypes under study, except that the phenotypes must be categorical. The same algorithms could 
be used to predict phenotypes of tumor cells based on their genotype (e.g., malignant vs. benign, drug resistance), 
or to make predictions based on metagenomic data. To facilitate further biological applications of this work, an 
open-source implementation of the method, that does not require prior knowledge of machine learning, is pro-
vided with this work, along with comprehensive tutorials (see Methods). The implementation is highly optimized 
and the algorithms are trained without loading all the genomic data into the computer’s memory.

Several extensions to this work are envisaged. The algorithms and their performance guarantees could be 
adapted to other types of representations for genomic variants, such as single nucleotide polymorphisms (SNP) 
and unitigs45. The techniques proposed by Hardt et al.46 could be used to ensure that the models are not biased 
towards undesirable covariates, such as population structure47,48. This could potentially increase the interpretabil-
ity of models, by avoiding the inclusion of rules that are associated with biases in the data. In addition, it would be 
interesting to generalize this work to continuous phenotypes, such as the prediction of minimum inhibitory con-
centrations in AMR20. Furthermore, another extension would be the integration of multiple omic data types to 
model phenotypes that result from variations at multiple molecular levels49. Additionally, this work could serve as 
a basis for efficient ensemble methods for genotype-to-phenotype prediction, such as random forest classifiers50, 
which could improve the accuracy of the resulting models, but would complexify the interpretation. Last but not 
least, the rule-based methods presented here assure good generalization if sparse sample-compressed classifiers 
with small empirical errors can be found. Nevertheless, it is known that good generalization can also be achieved 
in very high dimensional spaces with other learning strategies, such as achieving a large separating margin51,52 on 
a large subset of examples or by using learning algorithms that are algorithmically stable53. Although it remains 
a challenge to obtain interpretable models with these learning approaches, they could eventually be useful to 
measure the extent to which the rule-based methods are losing predictive power at the expense of interpretability.

Methods
Data acquisition.  The data were extracted from the Pathosystems Resource Integration Center (PATRIC) 
database10,24 FTP backend using the PATRIC tools Python package54 (February 4, 2018). First, AMR phenotypes 
taking the form of SIR (susceptible, intermediate, resistant) labels were extracted for several bacterial isolates and 
antibiotics. Isolates associated with the intermediate phenotype were not considered, except in the multi-class 
experiments, to form two groups of phenotypically distinct isolates. Second, the metadata were segmented by 
species and antibiotic to form datasets, each corresponding to a single antibiotic/species pair. Datasets containing 
at least 25 isolates of each phenotype (107 in total) were retained and the rest were discarded. Third, the genomes 
in each dataset were downloaded, using the preassembled versions provided by PATRIC.

A contextual introduction to supervised machine learning.  Machine learning is a subfield of computer 
science that aims to create algorithms that learn from experience. Such algorithms learn how to perform tasks by ana-
lyzing a set of examples. In supervised learning, each example consists of an input and an expected outcome. The goal 
of the algorithm is to learn a model that accurately maps any input to the correct outcome. In the present study, it is 
assumed that the inputs are genomes and the expected outcomes are discrete phenotypes (e.g., resistance vs. suscepti-
bility to an antimicrobial agent). Formally, let x ∈ {A, C, G, T}* be a genome, represented by any string of DNA nucleo-
tides, and y ∈ {p1, …, pc} be its corresponding phenotype, where {p1, …, pc} is any set of c arbitrary phenotypes. The 
learning algorithm is given a set of examples = … ∼S y y Dx x{( , ), , ( , )}m m

mdef
1 1 , where each example (xi, yi) is gener-

ated independently according to the same distribution D. This distribution is unobserved and represents the unknown 
factors that generate the data (e.g., the biological mechanisms that underlie a phenotype). Learning algorithms often 
work with a vector representation of data (our case) and thus, it is necessary to transform the genome sequences into 
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vectors. Let φ:{A, C, G, T}* → ℝd be an arbitrary function that maps a genome to a vector of d dimensions. In this study, 
φ(x) is a k-mer profile (described below) that characterizes the presence and absence of every k-mer in the genome. The 
objective of the algorithm is to learn a model h: ℝd → {p1, …, pc} that accurately maps the representation of a genome to 
its phenotype, i.e., h(φ(x)) ≈ y. This corresponds to minimizing the expected error for any example drawn according to 
the data-generating distribution, defined as:

R h y D h yx x( ) ( , ) [ ( ( )) ] (1)
def Pr

φ= ∼ ≠ .

The k-mer profile.  Genome sequences are often represented as sets of single nucleotide polymorphisms 
(SNP), which are variations that occur at a single base pair location within a population55–57. This approach relies 
on multiple sequence alignment, which is computationally expensive and can fail in the presence of large-scale 
genomic rearrangements, such as horizontal gene transfer, that are common in bacterial populations58–62. In con-
trast, reference-free methods that represent each genome by a set of words, alleviate the need for multiple sequence 
alignment58–62. For instance, in k-mer-based representations, each genome is characterized by the set of k-mers 
(i.e., short words of k nucleotides) that it contains. Genomes can then be compared based on the presence and 
absence of such words. This approach is computationally efficient, since the representation can be computed 
independently, in parallel, for each genome. However, its main downside is that the representation contains a lot 
of redundancy, due to the fact the many k-mers are always present or absent simultaneously (e.g., gene deletion/
insertion). In this sense, Jaillard et al.45 and Jaillard et al.63 proposed to replace k-mers by unitigs, i.e., words of 
variable length with unique presence/absence patterns that are generated using compacted De Bruijn graphs. In 
this study, we adopt a classical k-mer-based representation (referred to as k-mer profile) due to its simplicity and 
effectiveness. Nonetheless, it is important to note that the proposed algorithms could be adapted to work with 
other representations, such as SNPs and unitigs.

A k-mer profile is a vector of binary values that characterizes the presence or absence of every possible 
sequence of k DNA nucleotides in a genome. In theory, the dimension of k-mer profiles is 4k, which is approxi-
mately 4.6 × 1018 for k = 31. However, in practice, k-mers that do not occur in the set of genomes to be compared 
can be omitted since they cannot be used in the model17. This dramatically reduces the number of possible k-mers 
and thus, the size of the representation. Formally, let K be the set of all (possibly overlapping) k-mers that occur 
more than once in the genomes of a dataset S. For a genome x ∈ {A, C, G, T}*, the corresponding k-mer profile is 
given by the |K|-dimensional boolean vector φ(x) ∈ {0, 1}|K|, such that φ(x)i = 1 if k-mer ki ∈ K appears in x and 
φ(x)i = 0 otherwise. In this work, the k-mers in each genome were determined using the DSK k-mer counter64 
and the length k was set to 31, since extensive experiments showed that this length was appropriate for bacterial 
genome comparison17,65. The reader is referred to Drouin et al.17 for an illustration of the k-mer profile and a 
discussion on choosing an appropriate k-mer length. While the practical size of k-mer profiles is much smaller 
than their theoretical limit, they remain extremely high-dimensional data representations that push the limits of 
current learning algorithms in terms of scalability and generalization.

Boolean-valued rules based on k-mers.  The rule-based algorithms used in this work learn models that 
are arrangements of boolean-valued rules. Such rules take a k-mer profile as input and output true or false. We 
consider one presence rule and one absence rule for each k-mer ki ∈ K, which are defined as φ φ= =p x x( ( )) [ ( ) 1]k ii

 
and φ φ= =a x x( ( )) [ ( ) 0]k ii

, respectively. The goal of the learning algorithms is to find the arrangement of such 
rules that gives the most accurate predictions of the phenotype. The resulting models are interpretable and 
directly highlight the importance of using a small set of k-mers.

Performance guarantees based on sample compression theory.  A generalization bound (or risk 
bound) is a function ε(h, S, δ) that depends on what the model h achieves on the training set S. Such a function 
upper bounds, with probability at least 1−δ (over the random draws of S according to Dm), the generalization 
error of h as defined by Equation (1). Among other things, ε(h, S, δ) depends on the training error of h on S 
and on its complexity (as measured here by the number of rules used by h and its sample-compression size66). 
Furthermore, ε(h, S, δ) is valid simultaneously for all possible predictors h that can be constructed by the learning 
algorithm, but ε(h, S, δ) increases with the complexity of h and its training error. The guarantee on the gener-
alization error of h thus deteriorates as the model h becomes complex and/or inaccurate on the training data. 
Consequently, such a bound ε(h, S, δ) can be analyzed to understand what should be optimized in order to learn 
models that achieve good generalization.

Drouin et al. (2016) proposed a generalization bound for the SCM algorithm, which shed light on this algo-
rithm’s strong resistance to overfitting in the challenging genotype-to-phenotype setting17. Based on their work, 
we propose a new bound for the CART algorithm and demonstrate that its models can also achieve good gener-
alization in this setting. Together, these theoretical results support the empirical results reported in this study and 
strengthen our claim that rule-based classifiers are well-suited for genotype-to-phenotype studies.

The generalization bound εSCM(h, S, δ) proposed by Drouin et al.17 for the SCM is given by

ε δ δ= −
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−
− | | −
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SCM

where m is the number of training examples in S, and |h| is the number of rules in the conjunction/disjunction 
model. Furthermore, Z, called the compression set21,22,66, is a small subset of S in which all k-mers used by the 
model occur. We denote by |Z|, the number of genomes in Z, and by N(Z) the total number of nucleotides in Z. 

https://doi.org/10.1038/s41598-019-40561-2


1 0Scientific Reports |          (2019) 9:4071  | https://doi.org/10.1038/s41598-019-40561-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Moreover, r is the number of prediction errors made by h on S\Z, i.e., the examples of the training set that are not 
in Z. Finally, δΩ =









π
δ

| | + + | | +
⋅

h S( , , ) ln h r Zdef ( 1) ( 1) ( 1)
216

6 2 2 2
.

Using the same definitions and notation, the generalization bound εCART(h, S, δ) that we propose for CART is 
given by

ε δ

δ
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where c is the number of classes in the data. Interestingly, this bound shares many terms in common with the 
bound for the SCM, but also supports the multi-class setting. A detailed derivation of this bound is given in the 
Supplementary Methods, along with a discussion of related work on generalization bounds for decision tree mod-
els. Of note, we compare our bound to a related sample compression bound for decision tree models67 and show 
that it is better-suited for applications to genomic data.

These bounds indicate that any model that makes few errors on the training data, while using a small num-
ber of rules should achieve good generalization. This is precisely the type of models that were obtained in the 
experiments of this work. Surprisingly, the length k of the k-mers, which increases the size of the feature space 
exponentially, does not appear in these equations. This indicates that SCM and CART can achieve good general-
ization despite the immense dimensionality (4k) of the feature space that results from using large values of k. This 
property makes them ideal for genotype-to-phenotype prediction.

Fast model selection with bounds.  Model selection consists of choosing the configuration of the learning 
algorithm that yields the model with the smallest generalization error, as defined by Equation (1). Such a configu-
ration is an arrangement of user-defined parameters that control the behavior of the algorithm, which are referred 
to as hyperparameters (HPs). For instance, in the SCM algorithm, the maximum number of rules in a conjunc-
tion/disjunction model is a HP9. Similarly, in the CART algorithm, the minimum cost-complexity pruning algo-
rithm is used to reduce the complexity of the resulting models and the level of pruning is controlled by a HP8.

For settings where the data is scarce, such as genotype-to-phenotype studies, model selection is typically 
performed using k-fold cross-validation (see Hastie et al. (2015) for an introduction68). This method consists 
of partitioning the training data into k (typically 5 or 10) disjoint subsets of equal size (referred to as folds) and 
training the algorithm k times, each time using k − 1 folds for training and the remaining one for validation. The 
score attributed to each configuration of the algorithm is the proportion of prediction errors in validation over 
all folds, which is an empirical estimation of the generalization error given by Equation (1), and the one with the 
smallest score is selected. This procedure has two limitations: it is computationally intensive, since the algorithm 
is trained k times for each configuration, and it requires that some data be left out for validation.

An alternative method, referred to as bound selection, consists of using a generalization bound, such as those 
described at Equations (2) and (3), in replacement for cross-validation9,17. The idea is to train the algorithm with 
several configurations and score them using the bound value of the resulting model. The configuration that leads 
to the smallest bound value is retained. This approach is computationally and data efficient, since it requires a 
single training of the algorithm for each configuration and does not require that data be left out for validation. The 
reader is referred to Supplementary Fig. S4 for a comparative illustration of cross-validation and bound selection.

In this work, both model selection approaches were used to train the CART and SCM algorithm, result-
ing in the CARTb and SCMb algorithms (bound selection) and the CARTcv and SCMcv algorithms (ten-fold 
cross-validation). It was observed that models obtained using bound selection were just as accurate as those 
obtained using cross-validation, but that they were significantly less complex and thus, more interpretable (see 
Results). The configurations selected for each dataset are provided with this work (see Reproducibility).

Kover: a scalable disk-based implementation.  The rule-based algorithms used in this work are imple-
mented in Kover (https://github.com/aldro61/kover/). Kover is an open-source bioinformatics software that 
allows practitioners, with no prior knowledge of machine learning, to learn rule-based models of phenotypes 
from their data. It accepts genomes in the form of sequences (reads or contigs) or precomputed k-mer profiles. 
In the former case, the genomes are converted to k-mer profiles using the DSK k-mer counter. Kover automates 
the machine learning analysis (e.g., model selection, model evaluation), which ensures that proper protocols are 
followed. It produces detailed reports, which contain the learned models, along with several metrics assessing 
their accuracy. A detailed tutorial is provided with this work (see Tutorials).

From a computational perspective, the particularity of Kover is that the learning algorithms are trained 
out-of-core, which means that the dataset is never entirely loaded into the computer’s memory. This is achieved 
through the careful use of HDF5 and data chunking patterns17,69. In addition, Kover relies on the popcount 
atomic CPU instruction to train the algorithms directly from a compressed representation of the k-mer pro-
files, resulting in lesser memory requirements and faster computations17. These properties allow Kover to scale 
to datasets with sizes well beyond those encountered in this study and make it a tool of choice for large-scale 
genotype-to-phenotype studies based on machine learning.

Comparison to state-of-the-art classifiers.  Benchmark datasets.  One dataset per species was included 
in the benchmark and the datasets were selected to have the largest possible sample size with low class imbalance. 
For each species, all datasets with less than 20% class imbalance, defined as:
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where Nres(S) and Nsus(S) are respectively the number of examples with the resistant and susceptible phenotype in 
S, were considered and the one with the most examples was selected. The only exception is Salmonella enterica, 
where the most balanced dataset had 22% class imbalance.

Selected algorithms.  The benchmark includes a comparison to five learning algorithms and their choice is moti-
vated hereafter.

Logistic regression: This algorithm produces linear classifiers that estimate the probability that an exam-
ple belongs to each class. It can be used with an L1-norm regularizer to obtain sparse models that rely on a 
subset of k-mers (L1-logistic). It is interesting to compare the sparsity of these models to those of CART and 
SCM. Additionally, this algorithm can be used with an L2-norm regularizer to obtain dense models (L2-logistic) 
which serve to illustrate that sparsity does not have a detrimental effect on accuracy. The implementation in 
Scikit-Learn70 was used. In sharp contrast with Kover, it requires that the entire datasets be stored in the com-
puter’s memory, which is intractable for the datasets used in this study. Hence, the one million features that were 
most associated with the phenotype were selected using a univariate feature selection with a χ2 test71,72 and the 
others were discarded.

Polynomial Kernel Support Vector Machine: This kernel-based learning algorithms yields non-linear classi-
fiers that, when trained with binary k-mer profiles, correspond to a majority vote of all possible conjunctions of 
d k-mer presence rules, where d is the degree of the polynomial. It is thus particularly relevant to compare this 
algorithm to SCMb, which seeks the single, most accurate, conjunction. The implementation in Scikit-Learn70 was 
used and the kernel was computed using powers of the pairwise similarity (dot product of k-mer profiles) matrix 
of genomes. No feature selection was used, since the memory requirements of this algorithm are small (m × m 
for m learning examples).

Naive Bayes: This baseline algorithm assumes that each input feature is statistically independent given the 
class (which is generally false). This approach is computationally efficient in high dimensions, since it assumes 
that class densities are simply given by the product of marginal densities; justifying its use in our context. A cus-
tom implementation was used and the code is provided with this work (see Reproducibility).

Majority: This baseline algorithm is used to ensure that the algorithms successfully identify predictive patterns 
in the data. An algorithm that underperforms this baseline could have achieved better results without attempting 
to learn anything.

Additional data.  The 2140 AMR prediction models learned with CARTb and SCMb are provided with code 
for their visualization and guidelines for their interpretation at https://github.com/aldro61/kover2_paper.

Tutorials.  Detailed tutorials on using Kover for genotype-to-phenotype prediction are available at https://
aldro61.github.io/kover.

Reproducibility.  The code used to acquire the data and run the experiments, as well as detailed experimental 
results for each algorithm are available at https://github.com/aldro61/kover2_paper.

References
	 1.	 Meyer, U. A. Pharmacogenetics and adverse drug reactions. The Lancet 356, 1667–1671 (2000).
	 2.	 Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. 

Microbiol. 13, 42–51 (2015).
	 3.	 Bush, W. S. & Moore, J. H. Genome-wide association studies. PLoS computational biology 8, e1002822 (2012).
	 4.	 Power, R. A., Parkhill, J. & de Oliveira, T. Microbial genome-wide association studies: lessons from human GWAS. Nat. Rev. Genet. 

18, 41–50 (2017).
	 5.	 Szymczak, S. et al. Machine learning in genome-wide association studies. Genet. epidemiology 33, S51–S57 (2009).
	 6.	 Leung, M. K., Delong, A., Alipanahi, B. & Frey, B. J. Machine learning in genomic medicine: a review of computational problems and 

data sets. Proc. IEEE 104, 176–197 (2016).
	 7.	 Doshi-Velez, F. & Kim, B. Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017).
	 8.	 Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and regression trees (CRC press, 1984).
	 9.	 Marchand, M. & Shawe-Taylor, J. The set covering machine. The J. Mach. Learn. Res. 3, 723–746 (2002).
	10.	 Wattam, A. R. et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic 

Acids Res. 45, gkw1017–D542 (2016).
	11.	 Rishishwar, L., Petit, R. A., Kraft, C. S. & Jordan, I. K. Genome Sequence-Based Discriminator for Vancomycin-Intermediate 

Staphylococcus aureus. J. Bacteriol. 196, 940–948 (2013).
	12.	 Pesesky, M. W. et al. Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles 

in Gram-negative Bacilli from Whole Genome Sequence Data. Front. Microbiol. 7, 414 (2016).
	13.	 Eyre, D. W. et al. WGS to predict antibiotic MICs for Neisseria gonorrhoeae. J. Antimicrob. Chemother. 72, 1937–1947 (2017).
	14.	 Yang, Y. et al. Machine Learning for Classifying Tuberculosis Drug-Resistance from DNA Sequencing Data. Bioinforma. 91, 538 

(2017).
	15.	 Davis, J. J. et al. Antimicrobial Resistance Prediction in PATRIC and RAST. Sci. Reports 6, 42 (2016).
	16.	 Santerre, J. W., Davis, J. J., Xia, F. & Stevens, R. Machine learning for antimicrobial resistance. arXiv preprint arXiv:1607.01224 

(2016).
	17.	 Drouin, A. et al. Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons. BMC 

genomics 17, 754 (2016).
	18.	 Drouin, A. et al. Large scale modeling of antimicrobial resistance with interpretable classifiers. Mach. (2016).
	19.	 Macesic, N., Polubriaginof, F. & Tatonetti, N. P. Machine learning: novel bioinformatics approaches for combating antimicrobial 

resistance. Curr. opinion infectious diseases 30, 511–517 (2017).

https://doi.org/10.1038/s41598-019-40561-2
https://github.com/aldro61/kover2_paper
https://aldro61.github.io/kover
https://aldro61.github.io/kover
https://github.com/aldro61/kover2_paper


1 2Scientific Reports |          (2019) 9:4071  | https://doi.org/10.1038/s41598-019-40561-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

	20.	 Nguyen, M. et al. Developing an in silico minimum inhibitory concentration panel test for klebsiella pneumoniae. Sci. reports 8, 421 
(2018).

	21.	 Littlestone, N. & Warmuth, M. Relating data compression and learnability. Tech. Rep., University of California Santa Cruz, Santa 
Cruz, CA (1986).

	22.	 Floyd, S. & Warmuth, M. Sample compression, learnability, and the Vapnik-Chervonenkis dimension. Mach. Learn. 21, 269–304 
(1995).

	23.	 Clarke, R. et al. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat. 
Rev. Cancer 8, 37 (2008).

	24.	 Antonopoulos, D. A. et al. PATRIC as a unique resource for studying antimicrobial resistance. Briefings Bioinforma. (2017).
	25.	 Koop, G. Bayesian methods for fat data. Tech. Rep., Department of Economics, University of Strathclyde (2016).
	26.	 Romero, A. et al. Diet networks: Thin parameters for fat genomic. In International Conference on Learning Representations 2017 

(Conference Track) (2017).
	27.	 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
	28.	 Caminero, J. A., Sotgiu, G., Zumla, A. & Migliori, G. B. Best drug treatment for multidrug-resistant and extensively drug-resistant 

tuberculosis. The Lancet infectious diseases 10, 621–629 (2010).
	29.	 Magnet, S. & Blanchard, J. S. Molecular insights into aminoglycoside action and resistance. Chem. reviews 105, 477–498 (2005).
	30.	 De Stasio, E., Moazed, D., Noller, H. & Dahlberg, A. Mutations in 16s ribosomal rna disrupt antibiotic–rna interactions. The EMBO 

journal 8, 1213–1216 (1989).
	31.	 Suzuki, Y. et al. Detection of kanamycin-resistant mycobacterium tuberculosis by identifying mutations in the 16s rrna gene. J. 

clinical microbiology 36, 1220–1225 (1998).
	32.	 Georghiou, S. B. et al. Evaluation of genetic mutations associated with mycobacterium tuberculosis resistance to amikacin, 

kanamycin and capreomycin: a systematic review. PloS one 7, e33275 (2012).
	33.	 Zaunbrecher, M. A., Sikes, R. D., Metchock, B., Shinnick, T. M. & Posey, J. E. Overexpression of the chromosomally encoded 

aminoglycoside acetyltransferase eis confers kanamycin resistance in mycobacterium tuberculosis. Proc. Natl. Acad. Sci. 106, 
20004–20009 (2009).

	34.	 Chen, L. F., Anderson, D. J. & Paterson, D. L. Overview of the epidemiology and the threat of klebsiella pneumonia carbapenemases 
(kpc) resistance. Infect. drug resistance 5, 133 (2012).

	35.	 Palacios, M., Broberg, C. A., Walker, K. A. & Miller, V. L. A serendipitous mutation reveals the severe virulence defect of a klebsiella 
pneumoniae fepb mutant. mSphere 2, e00341–17 (2017).

	36.	 Dortet, L., Nordmann, P. & Poirel, L. Association of the emerging carbapenemase ndm-1 to bleomycin resistance protein in 
enterobacteriaceae and acinetobacter baumannii. Antimicrob. agents chemotherapy AAC–05583 (2012).

	37.	 Dortet, L. et al. Characterization of brpmbl, the bleomycin-resistance protein associated with the carbapenemase ndm. Antimicrob. 
agents chemotherapy AAC–02413 (2017).

	38.	 Yong, D. et al. Characterization of a new metallo-b-lactamase gene, blandm-1, and a novel erythromycin esterase gene carried on a 
unique genetic structure in klebsiella pneumoniae sequence type 14 from india. Antimicrob. agents chemotherapy 53, 5046–5054 
(2009).

	39.	 Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. statistical 
software 33, 1 (2010).

	40.	 Nelder, J. A. & Baker, R. J. Generalized linear models. Encycl. statistical sciences 4 (2004).
	41.	 Sch¨olkopf, B., Tsuda, K. & Vert, J.-P. Kernel methods in computational biology (MIT press, Cambridge, Massachusetts, 2004).
	42.	 Hand, D. J. & Yu, K. Idiot’s bayes-not so stupid after all? Int. statistical review 69, 385–398 (2001).
	43.	 Clinical & Laboratorial Standards Institute. CLSI M100-ed28:2018 Performance Standards for Antimicrobial Susceptibility Testing 

(2018).
	44.	 Food and Drug Administration. Guidance for industry and fda. class ii special controls guidance document: antimicrobial 

susceptibility test (ast) systems. Cent. for Devices Radiol. Heal. Food Drug Adm. US Dep. Heal. Hum. Serv. Silver Spring, MD (2009).
	45.	 Jaillard, M. et al. Representing Genetic Determinants in Bacterial GWAS with Compacted De Bruijn Graphs. bioRxiv 113563 (2017).
	46.	 Hardt, M., Price, E. & Srebro, N. Equality of opportunity in supervised learning. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, 

I. & Garnett, R. (eds) Advances in Neural Information Processing Systems 29, 3315–3323 (Curran Associates, Inc., 2016).
	47.	 Earle, S. G., Wu, C. H., Charlesworth, J. & Stoesser, N. Identifying lineage effects when controlling for population structure improves 

power in bacterial association studies. Nat. (2016).
	48.	 Collins, C. & Didelot, X. A phylogenetic method to perform genome-wide association studies in microbes that accounts for 

population structure and recombination. PLoS Comput. Biol. 14, e1005958 (2018).
	49.	 Ritchie, M. D., Holzinger, E. R., Li, R., Pendergrass, S. A. & Kim, D. Methods of integrating data to uncover genotype–phenotype 

interactions. Nat. Rev. Genet. 16, 85 (2015).
	50.	 Breiman, L. Random forests. Mach. learning 45, 5–32 (2001).
	51.	 Shawe-Taylor, J. & Cristianini, N. Kernel Methods for Pattern Analysis (Cambridge University Press, 2004).
	52.	 Vapnik, V. N. Statistical Learning Theory (Wiley, New York, NY, 1998).
	53.	 Bousquet, O. & Elisseff, A. Stability and generalization. J. Mach. Learn. Res. 499–526 (2002).
	54.	 Drouin, A. aldro61/patric tools, https://doi.org/10.5281/zenodo.1318375 (2018).
	55.	 Brookes, A. J. The essence of snps. Gene 234, 177–186 (1999).
	56.	 Nielsen, R., Paul, J. S., Albrechtsen, A. & Song, Y. S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. 

Genet. 12, 443–451 (2011).
	57.	 Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K. & Mardis, E. R. The Next-Generation Sequencing Revolution and Its 

Impact on Genomics. Cell 155, 27–38 (2013).
	58.	 Vinga, S. & Almeida, J. Alignment-free sequence comparison-a review. Bioinforma. 19, 513–523 (2003).
	59.	 Vinga, S. Biological sequence analysis by vector-valued functions: revisiting alignment-free methodologies for dna and protein 

classification. In Pham, T., Yan, H. & DI, C. (eds) Advanced Computational Methods for Biocomputing and Bioimaging, 71–107 (Nova 
Science Publishers, New York, 2007).

	60.	 Bonham-Carter, O., Steele, J. & Bastola, D. Alignment-free genetic sequence comparisons: a review of recent approaches by word 
analysis. Briefings Bioinforma. 15, 890–905 (2014).

	61.	 Leimeister, C.-A., Boden, M., Horwege, S., Lindner, S. & Morgenstern, B. Fast alignment-free sequence comparison using spaced-
word frequencies. Bioinforma. 30, 1991–1999 (2014).

	62.	 Song, K. et al. New developments of alignment-free sequence comparison: measures, statistics and next-generation sequencing. 
Briefings Bioinforma. 15, 343–353 (2014).

	63.	 Jaillard, M. et al. A fast and agnostic method for bacterial genome-wide association studies: bridging the gap between kmers and 
genetic events. bioRxiv 297754 (2018).

	64.	 Rizk, G., Lavenier, D. & Chikhi, R. Dsk: k-mer counting with very low memory usage. Bioinforma. btt020 (2013).
	65.	 Deraspe, M. et al. Phenetic Comparison of Prokaryotic Genomes Using k-mers. Mol. Biol. Evol. 34, 2716–2729 (2017).
	66.	 Marchand, M. & Sokolova, M. Learning with decision lists of data-dependent features. J. Mach. Learn. Res. 6, 427–451 (2005).
	67.	 Shah, M. Sample compression bounds for decision trees. In Proceedings of the 24th international conference on Machine learning, 

799–806 (ACM, 2007).

https://doi.org/10.1038/s41598-019-40561-2
https://doi.org/10.5281/zenodo.1318375


13Scientific Reports |          (2019) 9:4071  | https://doi.org/10.1038/s41598-019-40561-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

	68.	 Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning. Data Mining, Inference, and Prediction (Springer, 
Berlin, 2013).

	69.	 The HDF Group. Hierarchical Data Format, version 5 (2015).
	70.	 Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
	71.	 Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).
	72.	 Saeys, Y., Inza, I. & Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinforma. 23, 2507–2517 (2007).

Acknowledgements
The authors acknowledge Mathieu Blanchette, Christopher J.F. Cameron, Maia Kaplan, and Pier-Luc Plante 
for valuable comments and suggestions. This work was supported in part by an Alexander Graham Bell 
Canada Graduate Scholarship Doctoral Award of the Natural Sciences and Engineering Research Council of 
Canada (NSERC) to AD, an Alexander Graham Bell Canada Graduate Scholarship Master’s award (NSERC) 
to GL, the NSERC Discovery Grants (FL; 262067, MM; RGPIN-2016-05942), and the Canada Research Chair 
in Medical Genomics (JC). FR is associated with the Canada Research Excellence Chair in the Microbiome-
Endocannabinoidome Axis in Metabolic Health. This research was enabled in part by support provided by Calcul 
Québec (www.calculquebec.ca) and Compute Canada (www.computecanada.ca). Computations were performed 
on the Colosse (Laval University) and Graham (University of Waterloo) supercomputers under resource 
allocation projects nne-790-af and agq-973-ac.

Author Contributions
A.D. and G.L. conceived and conducted the experiments, A.D., F.R., G.L. and J.C. analyzed the results, A.D., F.L., 
G.L. and M.M. did the theoretical analysis of the learning algorithms, A.D. and G.L. implemented the learning 
algorithms in Kover. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-40561-2.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-40561-2
http://www.calculquebec.ca
http://www.computecanada.ca
https://doi.org/10.1038/s41598-019-40561-2
http://creativecommons.org/licenses/by/4.0/

	Interpretable genotype-to-phenotype classifiers with performance guarantees

	Results

	Overview of the data. 
	Rule-based models based on performance guarantees. 
	Genotype-to-phenotype prediction with rule-based models. 
	The models are highly accurate. 
	The models are highly interpretable. 

	Comparison to state-of-the-art classifiers. 
	Sample compression bounds for model selection. 
	Multi-class classification with decision trees. 

	Discussion

	Methods

	Data acquisition. 
	A contextual introduction to supervised machine learning. 
	The k-mer profile. 
	Boolean-valued rules based on k-mers. 
	Performance guarantees based on sample compression theory. 
	Fast model selection with bounds. 
	Kover: a scalable disk-based implementation. 
	Comparison to state-of-the-art classifiers. 
	Benchmark datasets. 
	Selected algorithms. 

	Additional data. 
	Tutorials. 
	Reproducibility. 

	Acknowledgements

	Figure 1 Summary of the PATRIC data.
	Figure 2 Accuracies of CARTb and SCMb on the validation data of each dataset, grouped by species.
	Figure 3 Rule-based genotype-to-phenotype classifiers.
	Figure 4 Running time (in seconds) of each algorithm and each model selection strategy on the benchmark datasets.
	Figure 5 Confusion matrices for the multi-class classification tasks.
	Table 1 Overview of the benchmark datasets.
	Table 2 Comparison to state-of-the-art classifiers in terms of accuracy and model complexity.
	Table 3 Comparison of models learned using bound selection (CARTb, SCMb) and cross-validation (CARTcv, SCMcv) as model selection strategies.




