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ABSTRACT DATA QUANTITATIVE ANALYSIS

o We propose the Self-Attention Network | | ¢ Seven large scale text classification datasets [2] grouped in two tasks: Topic Classifi- Table 2: Quantitative statistics of the self-attention mechanism
(SANet), a flexible and interpretable ar- cation (TC) and Sentiment Analysis (SA). behavior for the two text classification tasks.
chitecture for text classification.

o Experiments indicate that gains AG | Td % 127.6K etric Topic Classification Sentiment Analysis
obtained by self-attention is task- ok AG DBP. Yah. A. Yelp P. Yelp F. Amz. F. Amz. P.
dependent. DBP TC@ .

N Gini coef. 55.31 67.94 67.45 65.16 84.18 89.50 87.76

e Interpretability brought forward by our Vah, A TC>_j — — Diag. (b=1) 7.44 8.49 6.34 502 23.54 41.77 40.01
architecture highlighted the importance - .
of neighboring word interactions to ex- % N sosc| D!ag (b=2) 11.86 13.80 9.83 7.89 36.89 62.35 60.34
tract sentiment 5 P Diag. (b=3) 16.21 18.88 13.28 10.62 4549 73.53 71.43

' - (b=4) 20.42 23.74 16.59 13.19 50.90 79.49 77.21
(b=5)

Yelp F SA“——— e D1ag.
ARCHITECTURE p L Diag. 24.48 28.25 19.65 15.62 54.54 83.09 80.56
Amz. F. SA%% 2otk e Gini coefficient measures the inequality in the attention

Class o | s é ok weights distribution.
Probabilities e Diagonality computes the proportion of attention weights
0 200 400 600 S0 1000 which occur inside the band diagonal of a given bandwidth b.
Sequence length
Softmax _ | o o e Both metrics results support our qualitative observations and
X Figure 2: Visualization of sequences length distributions. strengthen the difference in attention behavior.
Feed-Forward
RN RESULTS ATTENTION INTERPRETABILITY
POOAlmg e Increase in depth and representation size in the big model is beneficial, compared to | | ® Attention on Topic Classification tasks looks for presence of
the simpler base model. iInteractions between important concepts, without considering
| | | | | relative distance, similarly to a bag-of-word approach.
» Add & Norm e Sentiment analysis tasks show an improvement of around 2% when using self-attention
compared to a baseline without attention, while topic classification shows no gain. . : : : e Qe
N Feed Forward P P 9 . GT. Business, SANet: Business, Baseline: Sci/Tech
Self-Attention A Table 1: Test error rates (%) for text classification. In bold, our best model and stars (*) e
Block iIndicate attention mechanisms. fees
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A Calllorillia
Baseline (base model) 7.34 1.30 26.87 6.39 39.98 41.80 6.38 awyers
. SANet* (base model) 7.86 1.27 2699 6.26 38.16 40.08 5.55 reached
Linear Baseline (big) 720 1.25 2590 642 3892 4058 5.82 3 -
. SANet* (big) 742 128 2588 4.77 36.03 38.67 4.52 -
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o Self-Attention(X) I ; L : R e Attention on Sentiment Analysis tasks has strong focus on
— Attention( XWe. XWe. XW ' | g e neighboring relation, with an interest concentrated around
= Attention(XWq, XWi, XWy) _ ; _ | o - . the diagonal which essentially consists of skip-bigram features
— softmax (XWQKXT> XWy B _ ' R _ : I ek 1 with relatively small gaps.

. . ok - ; - Eh GT: 4, SANet: 4, Baseline: 4
e Positional encoding: - - . ' ] |
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o No recurrent or convolutional layers. i - and
. - even
e Length-agnostic contrary to some ap- | | bettor .
proaches based on CNN, where se- ; " e % . i . food
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e Interpretability through attention visualization allowed us to discover and understand the model’s task-dependent behavior.
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Contact: {gael.letarte, frederik.paradis}.1@ulaval.ca e Possibility to use the global max pooling layer as a complementary tool for interpretability similarly to Class Activation Mapping (CAM).

¢ Insights on the importance of modeling interaction between neighboring words in order to accurately extract sentiment.




